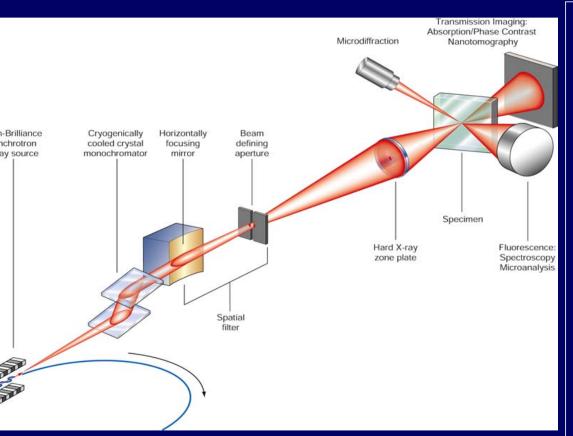
Insertion device for the hard x-ray nanoprobe


J. Maser, B. Lai, S. Sasaki

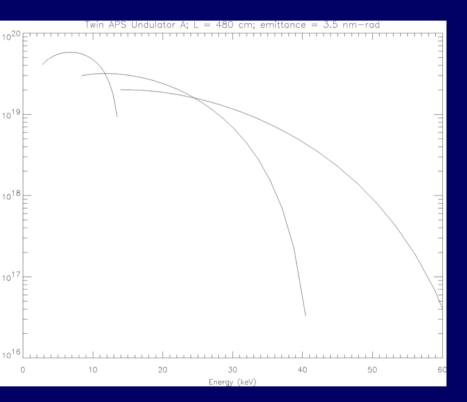
• Goal: Imaging and micro-analysis at highest spatial resolution

• Concept:

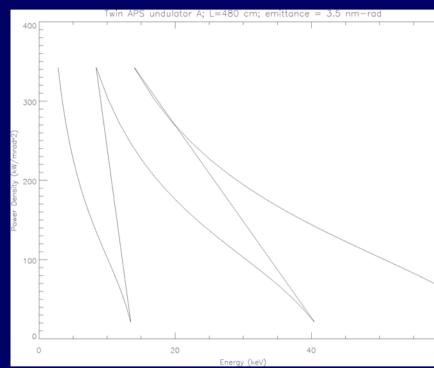
- Use spatially coherent part of ID beam to achieve diffraction limited resolution.
 - $-\sigma_{v} = 50 \ \mu m, D_{ZP} = 90 \ \mu m \ @ 10 \ keV$
 - Spatial Resolution: $\delta = 30 \text{ nm}$
 - Energy range: 3 30 keV
- Requirement: high 2D brilliance on specimen

Beamline layout NanoCAT, APS 26-ID

Technical Approach:


- Fresnel Zone Plates for focusing and imaging
- Match lateral coherence in ho and vert. using spatial filtering
- Twin collinear ID to maximiz brilliance.
 - i) Brilliance/power ratio:
 - ~ 2.5 x brilliance at 2 x PD
 - ii) Option: use of single ID at high K to reduce PD

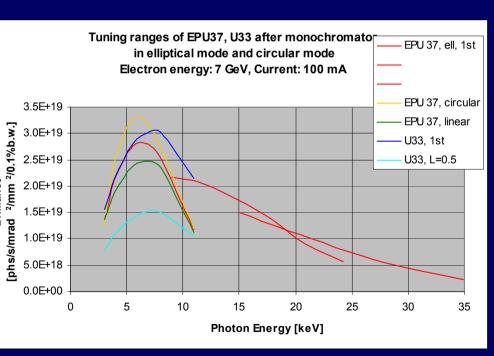
Design considerations

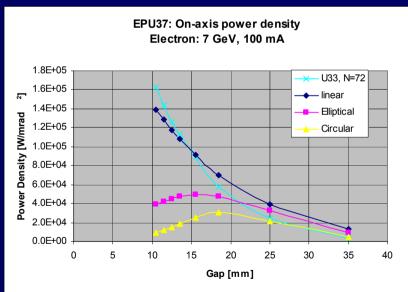

- High source brilliance \Rightarrow twin U-A, L = 4.8 m
- Small source aspect ratio σ_v/σ_h \Rightarrow spatial filtering
- Challenge: preserve brilliance in beamline!
 - − High total power: $P_{tot} = 12 \text{ kW}$ @ 3 keV (K=2.72), 100 mA ⇒ Custom front end (160 mA feasible)
 - High on-axis heatload: Twin collinear U-A at 3 keV (K = 2.72), 100 mA:
 - 340 kW/mrad²
 - $PD = 370 \text{ W/mm}^2 @ 30 \text{ m}$
 - HHL Crystal mono: Power absorbed in first 10 μm 14 W/mm²/10μm
 - HHL mirror (illuminated at full length): 1 W/mm² @ $\theta = 2.6$ mrad
- Future: I = 160 200 mA! 10 m straight sections?

Current design: Twin U3.3, L=480 cm

Brilliance, e = 3.5 nm-rad

Power density


Consideration of APPLE device for Nano-CAT


Horizontal and vertical parts of magnetic structure can be phase shifted by $\lambda_u/4$

 \Rightarrow

- low on-axis PD in elliptical mode (large K)
- high harmonics achieved in linear mode

Disadvantage: significantly reduced reflectivity of π mode in monochromator

U33, U37 AFTER monochromator. Monochromator reflectivity (Si<111>) on σ and π modes considered

Summary

NanoCAT conceptual design:

- Twin collinear U3.3:
 - Desired energy range: 3 30 keV
 - Maximize source brilliance: N=144
 - Flexibility: use one or two devices depending on K
 - Operational reliability: non-unique device

Challenge: on-axis power density!

Other options:

- larger λ_u (e.g. U3.6) to reach 3 keV at reduced K (specialized device)
- ID configurations that reduce on-axis PD, but still provide higher harmonics
 - Example: APPLE II.
 - Are there other possible configurations?
 - What is impact of different ID configurations on ring?